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Abstract

Unexpected and stunning new physical phenomena result when light interacts with a shock wave

or shock-like dielectric modulation propagating through a photonic crystal. These new phenomena

include the capture of light at the shock wave front and re-emission at a tunable pulse rate and

carrier frequency across the bandgap, and bandwidth narrowing as opposed to the ubiquitous

bandwidth broadening. To our knowledge, these effects do not occur in any other physical system

and are all realizable under experimentally accessible conditions. Furthermore, their generality

make them amenable to observation in a variety of time-dependent photonic crystal systems, which

has significant technological implications.

PACS numbers: 42.70.Qs, 42.79.Nv, 42.79.Hp, 42.79.Jq, 89.20.-a
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Manipulation of light using technologies that do not require electronics is the only feasi-

ble way to retain information about phase coherence and/or quantum information. These

properties are required for many all-optical signal processing schemes and all quantum in-

formation processing and transport schemes. Photonic crystals[1–5], or periodic dielectric

media, are a promising and versatile way to control the propagation of electromagnetic ra-

diation. In this paper, we consider the influence of a propagating shock wave, or shock-like

modulation of the dielectric, in a photonic crystal on the electromagnetic radiation inside.

We find that new physical effects arise when light reflects from the moving shock-like mod-

ulation of the dielectric. To our knowledge, these new effects are not possible to observe

in any other system. Moreover, they preserve optical coherence and may even preserve

quantum coherence given the nature of the shock-photon interaction. Through detailed nu-

merical simulations and analytical models, we have uncovered three new phenomena. The

first is the transfer of light frequency from the bottom of a bandgap to the top or vice-versa.

Significantly changing the frequency of light an arbitrary amount with high efficiency is a

very challenging problem. Non-linear materials are currently the only approach, but high

intensities are required and the frequencies produced are limited by the range of input fre-

quencies and phase-matching constraints. Furthermore, except for some special cases, more

than one input frequency is required. In contrast, frequency conversion in the shocked pho-

tonic crystal occurs at any intensity, the amount of frequency shift is tunable by adjusting

the bandgap size, and only one input frequency is required. The second new phenomenon

is the capture of light of significant bandwidth at the shock front for a controlled period of

time. Of interest in optical applications is the ability to trap and manipulate pulses of light,

but existing approaches for stopping light for a period of time only work for bandwidths

that are orders of magnitude too narrow for practical use and do not preserve quantum

information.[6–8] The third effect is the increase or decrease of the bandwidth of light by

orders of magnitude with 100% energy conservation. There is no existing non-quantum

mechanical way to significantly narrow the bandwidth of light.

Computational Experiments. To explore the phenomena associated with light scatter-

ing from a shock-like wave in a photonic crystal, we perform finite difference time domain

(FDTD)[9] simulations of Maxwell’s Equations in one dimension, single polarization, and

normal incidence for a system described by a time-dependent dielectric ε(x, t). These simu-

lations solve Maxwell’s equations with no approximations except for the discretization, and
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FIG. 1: Schematic of a shock wave moving to the right which compresses the lattice by a factor

of two. Light incident from the right (red arrow) will be converted up in frequency at the shock

front and escape to the right. The black arrows indicate the adiabatic evolution of the modes for

the lowest two bands.

are known to reproduce experiments very well.

A typical model shock-like profile in a photonic crystal considered in this work is given

by the dielectric function,
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where v is the shock speed, and a is the period of the pre-shocked crystal. This represents two

photonic crystals of periods a and a
2
which meet at an interface of width γ−1 which we take

to be 0.05. The photonic crystals on both sides of the shock front have periodic variations of

ε ranging from 1 to 13. As the interface moves, material in the crystal with lattice constant

a is transferred to the crystal with lattice constant a
2
. This choice of compression is for

illustrative purposes only. The observed phenomena are reproducible using scenarios with

considerably less compression, to be discussed later. The shocked lattice is identical to the

original but with a smaller lattice constant. The interface moves at the shock speed v.

The bandgaps for the crystals which exist in front of and behind the shock front are

depicted in Figure 1. Note there is an overlapping bandgap which extends over the entire

crystal formed by the second bandgap on the right and the first bandgap on the left. Consider

now electromagnetic radiation incident from the right (opposite to the direction of shock
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FIG. 2: Large frequency shift. Depicted are four moments in time during a computer simulation

of the shock in Equation 1 moving to the right with v = 3.4× 10−4c. Time is given in units of a/c.

The shock front location is indicated by the dotted green line. The light begins the simulation

below the gap in the unshocked material at ω = 0.37 as in Figure 1. As the light propagates to

the left, most of it is trapped at the shock front until it escapes to the right at ω = 0.44.

propagation) with frequency just below the second bandgap as shown in Figure 1. We find

that radiation is converted up in frequency to the top of the bandgap where it propagates

away from the shock. For example, Figure 2 shows the magnetic field for a simulation where

the shock front (dashed line) propagates to the right with v = 3.4 × 10−4c. The panels

in Figure 2 are obtained by Fourier transforming the magnetic field over windows of time

(∆t = 200a/c) centered at the times shown in the upper right corners. Light is initially

spatially contained in a Gaussian distribution centered around x/a = 40 at the band edge

frequency. As the Gaussian distribution moves and broadens to the left, Figure 2 indicates

that most of the incident light is trapped in a localized state at the shock front in the

overlapping bandgap frequency region of the two photonic crystals. While it is trapped, it

evolves up in frequency and is released to the right of the shock with about 20% change
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FIG. 3: Bandwidth narrowing. Depicted are two moments in time during computer simulation

of the shock in Equation 1. The shock front is indicated by the dotted green line, and time is

given in units of a/c. Light is confined between the reflecting shock front on the left and a fixed

reflecting surface on the right. As the shock moves to the right with v = 10−4c, the bandwidth of

the confined light is decreased by a factor of 4.

in frequency in this case. The amount of frequency shift in this example can be tuned by

adjusting the size of the bandgap of the pre-shocked crystal. The shock wave propagates

about 0.5a in Figure 2, and this frequency conversion process is observed once for every

lattice unit the shock wave traverses, resulting in a pulsed output for a continuous wave

input. The pulse rate, typically around 1010 Hz, can be controlled with the shock speed,

and the width of each pulse can be controlled by altering the crystal structure. Qualitatively

similar effects were observed for a slower shock velocity of v = 3.4× 10−5c.

Since the light escapes in pulses as the shock propagates, the output can be interpreted

as multiple discrete frequencies if the Fourier transform time window is large enough to

encompass at least several output pulses. Experimentally, interpretation of the output light

in Figure 2 as equally-spaced discrete frequencies or pulses is a matter of resolution in the

experimental apparatus and coherence time of incident light.

An additional consequence of this scenario is the localization of light for a controlled

period of time. Light is confined in the gap region for a time that is determined by the shock

speed and details of the crystal structure and shock front. Note that the propagation speed

of light is near zero while trapped at the shock front, which may have useful applications in

telecommunications or quantum optics.
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The shock-like dielectric modulation of Equation 1 can also be used to narrow the band-

width of a pulse of light. Bandwidth broadening can be obtained in non-linear and other

systems, but narrowing cannot. Here, bandwidth narrowing is accomplished with 100% ef-

ficiency by confining the light between the moving shock front on the left and a reflecting

surface of the right. Figure 3 contains results of such a simulation where the bandwidth of

input light is reduced by a factor of 4 with no losses. The shock is moving with v = 10−4c

and γ−1 = 2. The bandwidth can be narrowed more for slower shock velocities, narrower

initial bandwidths, and larger separations between the shock front and reflecting surface.

Analysis. The phenomenon observed in Figure 2 can be largely understood by considering

the time-evolution of the various allowed modes as the shock propagates. Each time the

shock wave propagates through one lattice unit, the crystal on the right in Figure 1 is

reduced in length by one lattice unit and the crystal on the left is increased by one lattice

unit. Since, for each crystal, the number of allowed values of k in a band is equal to the

number of lattice periods in that crystal (ignoring polarization degeneracy,) each time the

shock wave passes over one lattice unit, the number of states in each band must decrease by

one in the pre-shocked crystal and increase by one in the post-shocked crystal. This transfer

process is indicated by the mode movement arrows in Figure 1 for the lowest two bands.

Note that to accomplish this in the case of the second band, it is necessary for a mode to

move up through the overlapping gap formed by the 2nd bandgap in the preshocked region

and the 1st bandgap in the postshocked region.

Indeed, the large frequency change in Figure 2 is a direct result of the adiabatic evolution

of the light through this overlapping bandgap. The light is essentially trapped in a cavity

which is “squeezed” as the shock compresses the lattice, thereby increasing the frequency.

This occurs once each time the shock propagates through a lattice unit.

While a significant change in the frequency of electromagnetic radiation through me-

chanical means usually requires the interaction with objects that are moving at a significant

fraction of the speed of light, the adiabatic approach we describe does not have this re-

quirement. The adiabatic nature of the evolution of the radiation up in frequency through

the total system bandgap has the property that it can be done arbitrarily slowly with the

same large shifts in frequency, resulting in a velocity-independent Doppler-like shift. This

key physical mechanism liberates the shocked photonic crystal from the unfeasible task of

interface propagation near the speed of light. We also note that a time-reversed, frequency
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lowering effect also occurs in this adiabatic picture.

The argument presented here can be put on a firm analytical foundation. Since the

frequency of the incident light lies within the bandgap of the compressed photonic crystal,

an effective model of the shock front is a mirror with a space-dependent dependent E field

reflection coefficient, R(x), where x is the mirror position. Since the incident light reflects

completely from the bandgap of the post-shocked crystal, we let R(x) ≡ eiθ(x). If the shock

front is stationary, the E field in the pre-shocked crystal has the Bloch form,

E1e
ik1xwk1,n(x)e

−iω1t = E0R(x)eik0xwk0,n(x)e
−iω0t, (2)

where k0 and k1 correspond to the incident and reflected states respectively, E0 and E1 are

constants, n is the band index, and wk,n(x + a) = wk,n(x).

For light near a band edge (k = 0 for simplicity), the frequency has the form ω = ω0+αk2.

If we assume that the shock is moving sufficiently slowly that the reflected light has the form

of a single Bloch state, we can make the substitution x → x0−vt to obtain a relation for the

boundary condition at the shock front. We assume that the light bounces repeatedly between

the slowly moving shock and a fixed reflector positioned a distance L � a away in the crystal,

and take the limit v
vg

→ 0 to compute the evolution of k. Now let eiP (x0−vt) ≡
[

wk0,n(x0−vt)

wk1,n(x0−vt)

]
.

Assigning unit magnitude for the latter term is acceptable for all time in the limit of small

v where k1 → −k0. Then the time dependence of Equation 2 requires,

αk2
1 + k1v = αk2

0 + k0v + θ′(x0 − vt0)v + P ′(x0 − vt0)v, (3)

where θ and P have been linearized about t0, which is valid in the limit v
vg

→ 0. Primes

denote derivatives. The number of bounces of the light p that occur during a time a/v when

the reflector moves through one lattice constant is, p = avg

2Lv
, with each bounce described by

Equation 3. The variation of vg over this time can be neglected in the limit L � a.

The periodicity of the crystal gives the property that θ(x + a) − θ(x) = 2π� and the

periodicity of wk,n gives the property that P (x+a)−P (x) = 2πm, where � and m are integers.

In the limits v
vg

→ 0 (p → ∞) and L � a, these substitutions and some simplification give

the final result for the net change in k during the propagation of the shock over one lattice

constant,
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∆k =
1

2L

∫ x0+a

x0

(θ′ (x) + P ′ (x)) dx =
π(� + m)

L
. (4)

It can be shown that for any crystal structure, m = −1 above and below the first

bandgap, m = −2 above and below the second bandgap, and so on. It can also be shown

that for any crystal structure, � = 1 for the first bandgap, � = 2 for the second, and so on.

While quantum numbers are preserved in an adiabatic evolution, the k values we refer to

here change during an adiabatic evolution because they are convenient labels, not quantum

numbers. When Equation 4 is applied to the scenario in Figure 1, �+m = 1−2 = −1 which

indicates that the k crystal momentum of light will adiabatically decrease one k quantum

( π
L
) for each lattice constant the shock wave moves. When combined with the fact that

modes cannot collect or be annihilated at the band edge, this is consistent with the picture

presented above which shows that one mode of the system must move up through the total

system gap per lattice unit the shock traverses in Figure 1.

An important implication of Equation 4 is that the bandwidth of a pulse of light can be

modified in a controlled fashion while bouncing between the moving shock wave and a fixed

reflecting surface as in Figure 3. Equation 4 indicates the width of a wavepacket in crystal

momentum space δk should be preserved after many bounces because every k state moves

by the same amount. The dispersion relation near a band edge, ω = ω0 + α(k − kedge)
2,

indicates the bandwidth δω for a wavepacket of width δk is a function of k near the band

edge, δω = 2α(k − kedge)δk. Therefore the bandwidth of a pulse will be altered as it evolves

through k-space during the bouncing as shown in Figure 3. This fact enables the compression

of the bandwidth of a pulse of light to a vanishing amount in the limits of a large separation

between the reflecting surface and the slowly moving shock front. Note the bandwidth is

modified without a large change in average frequency. However, if the wavepacket reaches

the band edge, it will be trapped at the shock front and converted up in frequency until it

is expelled at the frequency of the top of the bandgap. In this case, there is a large average

frequency shift in addition to a narrowing in bandwidth and the output will be pulsed.

Finally, we speculate that quantum coherence may be conserved to a large extent in all

the processes described above. This is because the photon-shock interaction is essentially a

Doppler shift (albeit from a time-dependent interface boundary-condition) where the photon

is never absorbed and re-emitted because we operate at a frequency far from any material
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resonances. Moreover, since the system in no way performs a “measurement” on the photons

involved, the state of the interacting photon may be changed without significant destruction

of a quantum entanglement with another photon. Of course, a rigorous quantum mechanical

analysis would be needed to verify this effect but is beyond the scope of this paper.

Practical considerations. The new physical phenomena presented in this work are quite

general and also observable in 2D and 3D systems. The generalized shock-like profiles of

the dielectric of the type discussed in the previous sections may be generated by a variety

of means. It is possible to launch a physical shock wave into the photonic crystal. Materials

are routinely shocked to GPa and higher pressures using lasers and gun facilities and optical

techniques involving the reflection of light from a moving shock front are used as diagnostics

in shock experiments.[10, 11] A photonic crystal with any type of structure may be used

to observe the predicted effects, including a multilayer film. While we have considered

large compressions for illustrative purposes, the same phenomena are readily observable

with compressions of a few percent or less through the use of deliberately designed defect

bands or overlapping bandgaps formed by higher frequency bandgaps in the pre and post-

shocked crystals. Group velocities two orders of magnitude less than that in air have been

experimentally realized in photonic crystals.[12] Such group velocities combined with typical

shock speeds of 104 m/sec and a readily achievable Q for the trapped mode of 103 are more

than sufficient to observe all the effects described in this work. For example, a photonic

crystal consisting of a silicon/silicon-dioxide multilayer film can be fabricated and shocked

to a strain of a few percent without significantly increasing the material absorption or

changing the dielectric response. Silicon and silicon-dioxide have differing small-amplitude

shock speeds around 10 and 6 km/sec respectively, but all effects discussed in this paper

are observable even if the shock speed is variable. The shape and thickness of the shock

front are also largely irrelevant. If light is shined into this shocked crystal with frequency

components within roughly 10−3ωedge of the lower edge of a higher bandgap ωedge (e.g.,

the 30th bandgap, depending on the amount of strain), reflected light with a frequency

shift on the order of 1% will be observed. The pulse rate will be around 10GHz for light

of wavelength 1µm, and modification of the details of the crystal structure can alter the

properties of the pulses. The bandwidth narrowing scheme as presented in Figure 3 can also

be realized with this system by making the photonic crystal 100 lattice units in length and

shining the light into the side of the system at a shallow angle so that it bounces between the
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shock front and other reflecting mirror surface about 1000 times and then exits the system

from the other side. For this scenario, a bandwidth narrowing on the order of a factor of 10

is expected for input light, of frequency ω, further from the bandgap edge and bandwidth

10−3ω.

Alternatively, materials which undergo a change in the dielectric constant under an ap-

plied electric field or applied change in temperature can be modulated in a time-dependent

shock-like fashion. Time-dependent changes in the dielectric can also be generated using

materials with a non-linear optical response. Finally, light in a defect state can be adia-

batically transferred between the top and bottom of a bandgap in time-dependent MEMS

devices.
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