

## To Begin: A Cartoon in 2d





planewave

$$\vec{E}, \vec{H} \sim e^{i(\vec{k} \cdot \vec{x} \square / t)}$$

$$|\vec{k}| = \square / c = \frac{2\square}{\square}$$



#### To Begin: A Cartoon in 2d



for most [], beam(s) propagate through crystal without scattering (scattering cancels coherently)

...but for some  $\square$  (~ 2a), no light can propagate: a photonic band gap

#### Photonic Crystals

periodic electromagnetic media





(need a more complex topology)

with photonic band gaps: "optical insulators"

#### Photonic Crystals

periodic electromagnetic media



can trap light in cavities



and waveguides ("wires")

magical oven mitts for holding and controlling light

with photonic band gaps: "optical insulators"

### Photonic Crystals

periodic electromagnetic media



But how can we understand such complex systems? Add up the infinite sum of scattering? Ugh!

## A mystery from the 19th century





mean free path (distance) of electrons

## A mystery from the 19th century



mean free path (distance) of electrons

#### A mystery solved...

- 1 electrons are waves (quantum mechanics)
  - waves in a periodic medium can propagate without scattering:

Bloch's Theorem (1d: Floquet's)

The foundations do not depend on the specific wave equation.

#### Time to Analyze the Cartoon



...but for some  $\square$  (~ 2a), no light can propagate: a photonic band gap

(scattering cancels coherently)

#### Fun with Math

$$\vec{\vec{L}} \vec{E} = \vec{L} \frac{1}{c} \frac{\partial}{\partial t} \vec{H} = i \frac{\vec{L}}{c} \vec{H}$$

$$\vec{\vec{L}} \vec{H} = \vec{L} \frac{1}{c} \frac{\partial}{\partial t} \vec{E} + \vec{J} = i \frac{\vec{L}}{c} \vec{E}$$

dielectric function  $\Pi(\mathbf{x}) = n^2(\mathbf{x})$ 

First task: get rid of this mess

#### Hermitian Eigenproblems



Hermitian for real (lossless) □

well-known properties from linear algebra:

are real (lossless)

eigen-states are orthogonal

eigen-states are complete (give all solutions)

#### Periodic Hermitian Eigenproblems

[ G. Floquet, "Sur les équations différentielles linéaries à coefficients périodiques," *Ann. École Norm. Sup.* **12**, 47–88 (1883). ] [ F. Bloch, "Über die quantenmechanik der electronen in kristallgittern," *Z. Physik* **52**, 555–600 (1928). ]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:



Corollary 1: k is conserved, i.e. no scattering of Bloch wave

Corollary 2: 
$$\vec{H}_{\vec{k}}$$
 given by finite unit cell, so  $\square$  are discrete  $\square_n(\mathbf{k})$ 

# Periodic Hermitian Eigenproblems

Corollary 2:  $\vec{H}_{\vec{k}}$  given by finite unit cell, so  $\square$  are discrete  $\square_n(\mathbf{k})$ 



band diagram (dispersion relation)



#### Periodic Hermitian Eigenproblems in 1d

$$H(x) = e^{ikx} H_k(x)$$



Consider 
$$k+2\pi/a$$
:  $e^{i(k+\frac{2\pi}{a})x}H_{k+\frac{2\pi}{a}}(x) = e^{ikx}\left[e^{i\frac{2\pi}{a}x}H_{k+\frac{2\pi}{a}}(x)\right]$ 

k is periodic:

 $k + 2\pi/a$  equivalent to k

"quasi-phase-matching"

periodic!

satisfies same equation as  $H_k$ 

$$=H_k$$

#### Periodic Hermitian Eigenproblems in 1d

#### *k* is periodic:

 $k + 2\pi/a$  equivalent to k

"quasi-phase-matching"





[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887). ]

Start with a uniform (1d) medium:



[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887). ]



[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887). ]

Treat it as "artificially" periodic



[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887). ]



[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887). ]

#### Splitting of degeneracy:

state concentrated in higher index (1/2) has lower frequency



#### Some 2d and 3d systems have gaps

• In general, eigen-frequencies satisfy Variational Theorem:

$$\prod_{1} (\vec{k})^{2} = \min_{\vec{E}_{1} \atop \square \cdot \vec{E}_{1} = 0} \frac{\left| \left( \square + i\vec{k} \right) \square \vec{E}_{1} \right|^{2} \text{"kinetic"}}{\left| \square \vec{E}_{1} \right|^{2}} c^{2}$$
"inverse "potential"

$$\prod_{E_2} \vec{k})^2 = \min_{\vec{E}_2} \text{"..." bands "want" to be in high-}$$

$$\vec{E}_2 \text{ } \text{ } \text{ } \text{ } \vec{E}_2 = 0$$

$$\vec{E}_1^* \cdot E_2 = 0 \dots \text{ but are forced out by orthogonality} } -> \text{ band gap (maybe)}$$

## algebraic interlude

algebraic interlude completed...

... I hope you were taking notes\*

#### 2d periodicity, [=12:1]



#### 2d periodicity, [=12:1]



#### 2d periodicity, ≠12:1



#### 





#### 3d photonic crystal: complete gap, [≠12:1



[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]

# You, too, can compute photonic eigenmodes!

MIT Photonic-Bands (MPB) package:

http://ab-initio.mit.edu/mpb

on Athena:

add mpb