Periodic Surprises in Electromagnetism

Steven G. Johnson




To Begin: A Cartoon 1n 2d
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To Begin: A Cartoon n 2d
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...but for some A (~ 2a), no light can propagate: a photonic band gap




Photonic Crystals

periodic electromagnetic media
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Photonic Crystals

periodic electromagnetic media

can trap light in cavities and waveguides (“wires”

magical oven mitts for
holding and controlling light

with photonic band gaps: “optical insulators”



Photonic Crystals

periodic electromagnetic media

But how can we understand such complex systems?
Add up the infinite sum of scattering? Ugh!




A mystery from the 19th century
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A mystery from the 19th century

crystalline conductor (e.g. copper)
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current: j = O, E
/

conductivity (measured)

l

mean free path (distance) of electrons



A mystery solved...

@ electrons are waves (quantum mechanics)

@ waves in a periodic medium can
propagate without scattering:

Bloch’s Theorem (1d: Floquet’s)

The foundations do not depend on the specific wave equation.




Time to Analyze the Cartoon
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for most A, beam(s) propagate
A through crystal without scattering
(scattering cancels coherently)

...but for some A (~ 2a), no light can propagate: a photonic band gap



Fun with Math
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C ot get r1d of this mess

V x H = /g%%l:?+/—z—eE

dielectric function &(X) = n%(x)
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eigen-operator eigen-value cigen-state




Hermitian Eigenproblems

2
1 — () — + constraint

Vx—VxH=|—| H =
- - N V-H=0

eigen-operator eigen-value cigen-state

\

Hermitian for real (lossless) &

=P well-known properties from linear algebra:

w are real (lossless)
eigen-states are orthogonal
eigen-states are complete (give all solutions)



Periodic Hermitian Eigenproblems

[ G. Floquet, “Sur les équations différentielles linéaries a coefficients périodiques,” Ann. Ecole Norm. Sup. 12, 47-88 (1883). ]
[ F. Bloch, “Uber die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555-600 (1928). ]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:

- ilk-x-ar) =
can choose: H(X,t) = 6( )HE(X)
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Corollary 1: k 1s conserved, i.e. no scattering of Bloch wave

Corollary 2: H~ given by finite unit cell, g:i &g

SO a) are discrete w,(K) 000



Periodic Hermitian Eigenproblems

Corollary 2: H~ given by finite unit cell Q -----
SO a) are discrete w,(K) QQ ®

band diagram (dispersion relation)
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Periodic Hermitian Eigenproblems in 1d
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Periodic Hermitian Eigenproblems in 1d

k 1s periodic:
k + 2m/a equivalent to k
“quasi-phase-matching”

&(x) = e(x+a)
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Any 1d Periodic System has a Gap

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145—-159 (1887). ]

Start with
a uniform (1d) medium:




Any 1d Periodic System has a Gap

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145—-159 (1887). ]

Treat it as
“artificially” periodic

bands are “folded”
by 27t/a equivalence w
/ e+zx, e_ ¢
! (J'L’ ) . ( JT
— ¢cos| — x|, sin| —x
| a a

—J'E:/ a 0 J'C:/ a



Any 1d Periodic System has a Gap

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145—-159 (1887). ]

Treat it as
“artificially” periodic

a &(x) = e(x+a)
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Any 1d Periodic System has a Gap

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145—-159 (1887). ]

Add a small
“real” periodicity
& =& + A¢
a &(x) = e(x+a)
W




Any 1d Periodic System has a Gap

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145—-159 (1887). ]

Splitting of degeneracy:

Add a small state concentrated in higher index (&,)
“real” periodicity has lower frequency
& =& + A¢
L, &)= e(vta)




Some 2d and 3d systems have gaps

* In general, eigen-frequencies satisty Variational Theorem:

— - |2 L
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()()Z(k)2 = min "..." bands “want” to be in high-¢
E2
V-eE,=0

[€E, -E,=0...but are forced out by orthogonality
—> band gap (maybe)



algebraic interlude

algebraic interlude completed...

... I hope you were taking notes™

[ *if not, see e.g.: Joannopoulos, Meade, and Winn, Photonic Crystals: Molding the Flow of Light |



2d periodicity, e=12:1
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2d periodicity, e=12:1
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2d periodicity, e=12:1

irreducible Brillouin zone
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2d photonic crystal: TE gap, e=12:1
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3d photonic crystal: complete gap , e=12:1

;'.'. U L r X W K
+%¢°%s
e%e’s % gap for n > ~4:1

[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]




You, too, can compute
photonic eigenmodes!

MIT Photonic-Bands (MPB) package:
http://ab-initio.mit.edu/mpb

on Athena:

add mpb



