Computational Photonics: Frequency and Time Domain Methods

Steven G. Johnson MIT Applied Mathematics

Nano-photonic media (-scale)

Photonic Crystals

periodic electromagnetic media

can have a band gap: optical "insulators"

Electronic and Photonic Crystals

Electronic & Photonic Modeling

Electronic

- strongly interacting
 - —entanglement, Coulomb
 - —tricky approximations

• lengthscale dependent (from Planck's *h*)

Photonic

- non-interacting (or weakly),
 - simple approximations(finite resolution)
 - —any desired accuracy
- scale-invariant
 - -e.g. size $\boxed{10}$ $\boxed{}$ $\boxed{10}$ (except materials may change)

Computational Photonics Problems

- Time-domain simulation
 - start with current $\mathbf{J}(\mathbf{x},t)$
 - run "numerical experiment" to simulate $\mathbf{E}(\mathbf{x}, t)$, $\mathbf{H}(\mathbf{x}, t)$
- Frequency-domain linear response
 - start with harmonic current $\mathbf{J}(\mathbf{x}, t) = e^{-i \Box t} \mathbf{J}(\mathbf{x})$
 - solve for steady-state harmonic fields E(x), H(x)
 - involves solving linear equation Ax=b
- Frequency-domain eigensolver
 - solve for source-free harmonic eigenfields $\mathbf{E}(\mathbf{x})$, $\mathbf{H}(\mathbf{x}) \sim e^{-i\Box t}$
 - involves solving eigenequation $Ax = \square^2 x$

Numerical Methods: Basis Choices

finite difference

$$\frac{df}{dx} \prod \frac{f(x + ||x|) \prod f(x || ||x|)}{||x|} + O(||x^2|)$$

finite elements

in irregular "elements," approximate unknowns by low-degree polynomial

spectral methods

boundary-element methods

Numerical Methods: Basis Choices

finite difference

spectral methods

Much easier to analyze, implement, generalize, parallelize, optimize, ...

finite elements

in irregular "elements," approximate unknowns by low-degree polynomial

boundary-element methods

discretize only the boundaries between homogeneous media

...solve integral equation via Green's functions

Potentially much more efficient, especially for high resolution

Computational Photonics Problems

• Time-domain simulation

- start with current $\mathbf{J}(\mathbf{x},t)$
- run "numerical experiment" to simulate $\mathbf{E}(\mathbf{x}, t)$, $\mathbf{H}(\mathbf{x}, t)$

• Frequency-domain linear response

- start with harmonic current $\mathbf{J}(\mathbf{x}, t) = e^{-i\Box t} \mathbf{J}(\mathbf{x})$
- solve for steady-state harmonic fields E(x), H(x)
- involves solving linear equation Ax=b

• Frequency-domain eigensolver

- solve for source-free harmonic eigenfields $\mathbf{E}(\mathbf{x}), \mathbf{H}(\mathbf{x}) \sim e^{-i\Box t}$
- involves solving eigenequation $Ax = \square^2 x$

Numerical Methods: Basis Choices

spectral methods

finite elements

in irregular "elements," approximate unknowns by low-degree polynomial

boundary-element methods

FDTD

Finite-Difference Time-Domain methods

Divide both space and time into discrete grids

- spatial resolution Δx
- temporal resolution Δt

Very general: arbitrary geometries, materials, nonlinearities, dispersion, sources, ...

— any photonics calculation, in principle

The Yee Discretization (1966)

Staggered grid in space:

every field component is stored on a different grid

The Yee Discretization (1966)

$$\frac{\partial \mathbf{H}}{\partial t} = \left[\frac{1}{\Box} \right] \mathbf{E}$$

$$\frac{\partial H_z}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \right] \frac{\partial E_y}{\partial x} \left[\frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_z}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \right] \frac{\partial E_y}{\partial x} \left[\frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{1}{\Box} \left[\frac{\partial E_y}{\partial x} \right] \frac{\partial E_x}{\partial y} \right]$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{\partial E_x}{\partial x} \right] \frac{\partial E_x}{\partial y} \Big|_{i+\frac{1}{2},j+\frac{1}{2}}$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{\partial E_x}{\partial x} \right] \frac{\partial E_x}{\partial y} \Big|_{i+\frac{1}{2},j+\frac{1}{2}}$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{\partial E_x}{\partial x} \right] \frac{\partial E_x}{\partial y} \Big|_{i+\frac{1}{2},j+\frac{1}{2}}$$

$$\frac{\partial E_x}{\partial t} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \left[\frac{\partial E_x}{\partial x} \right] \frac{\partial E_x}{\partial x} \Big|_{i+\frac{1}{2},j+\frac{1}{2}} \Big$$

all derivatives become center differences...

The Yee Discretization (1966)

all derivatives become *center differences*... including derivatives in *time*

$$\frac{\partial \mathbf{H}}{\partial t}\bigg|_{t=n | t} = \frac{1}{n} \mathbf{E} \mathbf{E} \mathbf{E} = \frac{\mathbf{H}(n+\frac{1}{2}) \mathbf{H}(n | \frac{1}{2})}{\mathbf{t}} + \mathbf{O}(\Delta t^2)$$

Explicit time-stepping:

stability requires
$$\Box t < \frac{\Box x}{\sqrt{\# \text{ dimensions}}}$$

(vs. *implicit* time steps: invert large matrix at each step)

FDTD Discretization Upshot

- For stability, space and time resolutions are proportional
 - doubling resolution in 3d requires at least $16 = 2^4$ times the work!
- But at least the error goes quadratically with resolution ...right?

...not necessarily!

Difficulty with a grid: representing discontinuous materials?

... how does this affect accuracy?

Field Discontinuity Degrades Order of Accuracy

TE polarization (E in plane: discontinuous)

Sub-pixel smoothing

Past sub-pixel smoothing methods can make error worse!

& convergence is still only linear

[Dey, 1999] [Kaneda, 1997] [Mohammadi, 2005]

A Criterion for Accurate Smoothing

1st-order errors from smoothing []

We want the smoothing errors to be zero to 1st order

— minimizes error and 2nd-order convergent!

$$\begin{array}{c|c} & Use \ a \ tensor \ \hline \\ & & \\ &$$

Consistently the Lowest Error

[Farjadpour et al., Opt. Lett. 2006]

A qualitatively different case: corners

Yes, but what can you do with FDTD?

Some common tasks:

- Frequency-domain response:
 - put in harmonic source and wait for steady-state
- Transmission/reflection spectra:
 - get entire spectrum from a single simulation
 (Fourier transform of impulse response)
- Eigenmodes and resonant modes:
 - get all modes from a single simulation (some tricky signal processing)

Transmission Spectra in FDTD

example: a 90° bend, 2d strip waveguide

transmitted power = energy flux here:

Transmission Spectra in FDTD

Fourier-transform the fields at each x:

Transmission Spectra in FDTD

must always do two simulations: one for normalization

Reflection Spectra in FDTD

Transmission/Reflection Spectra

Dimensionless Units

Maxwell's equations are scale invariant

- most useful quantities are dimensionless ratios like a / \square , for a characteristic lengthscale a
- same ratio, same \square = same solution regardless of whether $a = 1\mu$ m or 1km

Our (typical) approach:

pick characteristic lengthscale a

- measure distance in units of a
- measure time in units of a/c
- measure \square in units of $2\pi c/a = a / \square$

—

Absorbing Boundaries: Perfectly Matched Layers

Artificial absorbing material *overlapping* the computation

Theoretically reflectionless

... but PML is no longer perfect with finite resolution, so "gradually turn on" absorption over finite-thickness PML

Computational Photonics Problems

• Time-domain simulation

- start with current $J(\mathbf{x},t)$
- run "numerical experiment" to simulate $\mathbf{E}(\mathbf{x}, t)$, $\mathbf{H}(\mathbf{x}, t)$

• Frequency-domain linear response

- start with harmonic current $\mathbf{J}(\mathbf{x}, t) = e^{-i\Box t} \mathbf{J}(\mathbf{x})$
- solve for steady-state harmonic fields E(x), H(x)
- involves solving linear equation Ax=b

• Frequency-domain eigensolver

- solve for source-free harmonic eigenfields $\mathbf{E}(\mathbf{x}), \mathbf{H}(\mathbf{x}) \sim e^{-i\Box t}$
- involves solving eigenequation $Ax = \square^2 x$

Numerical Methods: Basis Choices

finite difference

finite elements

in irregular "elements," approximate unknowns by low-degree polynomial

boundary-element methods

A Maxwell Eigenproblem

$$\vec{\Box} \vec{E} = \vec{\Box} \frac{1}{c} \frac{\partial}{\partial t} \vec{H} = i \frac{\vec{\Box}}{c} \vec{H}$$

$$\vec{\Box} \vec{D} \vec{H} = \vec{\Box} \frac{1}{c} \frac{\partial}{\partial t} \vec{E} + \vec{J} = \vec{\Box} i \frac{\vec{\Box}}{c} \vec{E}$$

dielectric function $\Pi(\mathbf{x}) = n^2(\mathbf{x})$

First task: get rid of this mess

Electronic & Photonic Eigenproblems

Electronic

$$\frac{1}{2m} \frac{\hbar^2}{2m} = E$$

nonlinear eigenproblem (V depends on e density $| / |^2$)

Photonic

$$\frac{1}{2m} \frac{\hbar^2}{2m} \Box^2 + V \overrightarrow{D} = E \Box \qquad \Box \overrightarrow{D} \Box \overrightarrow{H} = \overrightarrow{D} \overrightarrow{H}$$

simple linear eigenproblem (for linear materials)

-many well-known computational techniques

Hermitian = real E & [], ... Periodicity = Bloch's theorem...

A 2d Model System

Periodic Eigenproblems

if eigen-operator is periodic, then Bloch-Floquet theorem applies:

Corollary 1: k is conserved, i.e. no scattering of Bloch wave

Corollary 2:
$$\vec{H}_{\vec{k}}$$
 given by finite unit cell, so \square are discrete $\square_n(\mathbf{k})$

A More Familiar Eigenproblem

find the normal modes of the waveguide:

$$\mathbf{H}(y,t) = \mathbf{H}_k(y)e^{i(kx\square t)}$$

(propagation constant k $a.k.a. \square$)

Solving the Maxwell Eigenproblem

Finite cell \rightarrow *discrete* eigenvalues \square_n

Want to solve for $\square_n(\mathbf{k})$, & plot vs. "all" **k** for "all" n,

where: $\mathbf{H}(x,y) \mathbf{\Box}^{i(\mathbf{k}\cdot\mathbf{x} - \Box t)}$

- 1 Limit range of \mathbf{k} : irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 1

 $\mathbf{1}$ Limit range of \mathbf{k} : irreducible Brillouin zone

- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2a

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis (N)

$$|\mathbf{H}\rangle = \mathbf{H}(\mathbf{x}_t) = \prod_{m=1}^{N} h_m \mathbf{b}_m(\mathbf{x}_t)$$
 solve: $\hat{A}|\mathbf{H}\rangle = \prod^{2} |\mathbf{H}\rangle$

finite matrix problem: $Ah = \prod^2 Bh$

$$\langle \mathbf{f} | \mathbf{g} \rangle = \mathbf{f}^* \cdot \mathbf{g}$$
 $A_{m\ell} = \langle \mathbf{b}_m | \hat{A} | \mathbf{b}_\ell \rangle$ $B_{m\ell} = \langle \mathbf{b}_m | \mathbf{b}_\ell \rangle$

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2b

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis

— must satisfy constraint: $(\Box + i\mathbf{k}) \cdot \mathbf{H} = 0$

Planewave (FFT) basis

$\mathbf{H}(\mathbf{x}_t) = \prod_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{x}_t}$

constraint:
$$\mathbf{H}_{\mathbf{G}} \cdot (\mathbf{G} + \mathbf{k}) = 0$$

uniform "grid," periodic boundaries, simple code, O(N log N)

Finite-element basis

[figure: Peyrilloux *et al.*, *J. Lightwave Tech*. **21**, 536 (2003)]

constraint, boundary conditions:

Nédélec elements

[Nédélec, *Numerische Math.* **35**, 315 (1980)]

nonuniform mesh, more arbitrary boundaries, complex code & mesh, O(N)

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 3a

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \prod^2 Bh$$

Slow way: compute A & B, ask LAPACK for eigenvalues

— requires $O(N^2)$ storage, $O(N^3)$ time

Faster way:

- start with *initial guess* eigenvector h_0
- *iteratively* improve
- O(Np) storage, ~ $O(Np^2)$ time for p eigenvectors (p smallest eigenvalues)

Solving the Maxwell Eigenproblem: 3b

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \prod^2 Bh$$

Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

Solving the Maxwell Eigenproblem: 3c

- 1 Limit range of **k**: irreducible Brillouin zone
- 2 Limit degrees of freedom: expand **H** in finite basis
- 3 Efficiently solve eigenproblem: iterative methods

$$Ah = \prod^2 Bh$$

Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue \square_0 minimizes:

minimize by preconditioned conjugate-gradient (or...)

Band Diagram of 2d Model System

(radius 0.2a rods, $\not\equiv 12$)

Origin of Gap in 2d Model System

The Iteration Scheme is Important

(minimizing function of 10^4 – 10^8 + variables!)

Steepest-descent: minimize $(h + \square \square f)$ over \square ... repeat

Conjugate-gradient: minimize $(h + \square d)$

— d is $\prod f + (stuff)$: conjugate to previous search dirs

Preconditioned steepest descent: minimize $(h + \square d)$

$$-d = (approximate A^{-1}) \Box f \sim Newton's method$$

Preconditioned conjugate-gradient: minimize $(h + \square d)$

—
$$d$$
 is (approximate A⁻¹) [$\Box f$ + (stuff)]

The Iteration Scheme is Important

(minimizing function of ~40,000 variables)

The Boundary Conditions are Tricky

The Daveraging is Important

changes *order*of convergence
from Δx to Δx^2

(similar effects in other E&M numerics & analyses)

Gap, Schmap?

But, what can we do with the gap?

Intentional "defects" are good

microcavities

waveguides ("wires")

Intentional "defects" in 2d

(Same computation, with supercell = many primitive cells)

microcavities

waveguides

Microcavity Blues

For cavities (*point defects*) frequency-domain has its drawbacks:

- Best methods compute lowest □ bands,
 but N^d supercells have N^d modes
 below the cavity mode expensive
- Best methods are for Hermitian operators, but losses requires non-Hermitian

Time-Domain Eigensolvers

(finite-difference time-domain = FDTD)

Simulate Maxwell's equations on a discrete grid, + absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole (*) source

decay rate in time gives loss

Signal Processing is Tricky

a common approach: least-squares fit of spectrum

Fits and Uncertainty

problem: have to run long enough to *completely* decay

There is a better way, which gets complex \square to > 10 digits

Unreliability of Fitting Process

Resolving two overlapping peaks is near-impossible 6-parameter nonlinear fit (too many local minima to converge reliably)

There is a better way, which gets complex for both peaks to > 10 digits

Quantum-inspired signal processing (NMR spectroscopy):

Filter-Diagonalization Method (FDM)

[Mandelshtam, J. Chem. Phys. **107**, 6756 (1997)]

Given time series
$$y_n$$
, write: $y_n = y(n \square t) = \square_k a_k e^{\square i \square_k n \square t}$

...find *complex* amplitudes a_k & frequencies \Box_k by a simple linear-algebra problem!

Idea: pretend y(t) is autocorrelation of a quantum system:

$$\hat{H}|\Box\rangle = i\hbar \frac{\partial}{\partial t}|\Box\rangle$$
 time- Δt evolution-operator: $\hat{U} = e^{\Box i\hat{H}\Box t/\hbar}$

say:
$$y_n = \langle [0] | [n] t \rangle = \langle [0] | \hat{U}^n | [0] \rangle$$

Filter-Diagonalization Method (FDM)

[Mandelshtam, J. Chem. Phys. **107**, 6756 (1997)]

$$y_n = \langle \Box(0) | \Box(n\Box t) \rangle = \langle \Box(0) | \hat{U}^n | \Box(0) \rangle \qquad \hat{U} = e^{\Box i \hat{H} \Box t / \hbar}$$

We want to diagonalize U: eigenvalues of U are $e^{i\Box \Delta t}$... expand U in basis of $|\Box(n\Delta t)\rangle$:

$$U_{m,n} = \langle \Box(m\Box t) | \hat{U} | \Box(n\Box t) \rangle = \langle \Box(0) | \hat{U}^m \hat{U} \hat{U}^n | \Box(0) \rangle = y_{m+n+1}$$

 U_{mn} given by y_n 's — just diagonalize known matrix!

Filter-Diagonalization Summary

[Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

U_{mn} given by y_n 's — just diagonalize known matrix!

A few omitted steps:

- —Generalized eigenvalue problem (basis not orthogonal)
- —Filter y_n 's (Fourier transform): small bandwidth = smaller matrix (less singular)

- resolves many peaks at once
- # peaks not known a priori
- resolve overlapping peaks
- resolution >> Fourier uncertainty

Do try this at home

FDTD simulation:

```
http://ab-initio.mit.edu/meep/
```

Bloch-mode eigensolver:

```
http://ab-initio.mit.edu/mpb/
```

Filter-diagonalization:

```
http://ab-initio.mit.edu/harminv/
```

```
Photonic-crystal tutorials (+ THIS TALK):
    http://ab-initio.mit.edu/
    /photons/tutorial/
```

Meep (FDTD)

- Arbitrary □(x) including dispersive, loss/gain, and nonlinear [□(2) and □(3)]
- Arbitrary $\mathbf{J}(\mathbf{x},t)$
- PML/periodic/metal bound.
- 1d/2d/3d/cylindrical
- power spectraeigenmodes

MPB (Eigensolver)

- Arbitrary periodic [(x) anisotropic, magneto-optic, ... (lossless, linear materials)
 - 1d/2d/3d
- band diagrams, group velocities perturbation theory, ...

- MPI parallelism
- exploit mirror symmetries

- fully scriptable interface
- built-in multivariate optimization, integration, root-finding, ...
- field output (standard HDF5 format)

Unix Philosophy

combine small, well-designed tools, via files

Input text file \longrightarrow MPB/Meep \longrightarrow standard formats (text + HDF5)

Disadvantage:

have to learn several programs

Advantages:

- flexibility
- batch processing, shell scripting
- ease of development

Visualization / Analysis software (Matlab, Mayavi [vtk], command-line tools, ...)

Unix Philosophy

combine small, well-designed tools, via files

Embed a full scripting language:

- parameter sweeps
- complex parameterized geometries
- optimization, integration, etc.
- programmable J(x, t), etc.
- ... Turing complete

Visualization / Analysis software (Matlab, Mayavi [vtk], command-line tools, ...)

A Simple Example (MPB)

Need to specify:

- computational cell size/resolution
- geometry, i.e. \boxed{y}
- what *k* values
- how many modes $(n = 1, 2, \dots ?)$

Need to specify:

• computational cell size/resolution

```
(set! geometry-lattice (make lattice (size no-size 10 no-size)
(set! resolution 32)
```

- geometry, i.e. y
- what *k* values

Need to specify:

```
• computational cell size/resolution
```


Need to specify:

```
• computational cell size/resolution
```

```
• geometry, i.e. \boxed{y}

• what k values

(set! k-points

(interpolate 10 (list (vector3 0 0 0) (vector3 2 0 0))))
```

• how many modes (n = 1, 2, ... ?)

Need to specify:

- computational cell size/resolution
- geometry, i.e. $\square(y)$
- what *k* values
- how many modes (n = 1, 2, ...?) (set! num-bands 5)

```
...Then run:
```

or only TM polarization: (run-tm)

or only TM, even modes: (run-tm-yeven)

 $\square = 1$

 $\square = 12$

Simple Example (MPB) Results

Do try this at home

FDTD simulation:

```
http://ab-initio.mit.edu/meep/
```

Bloch-mode eigensolver:

```
http://ab-initio.mit.edu/mpb/
```

Filter-diagonalization:

```
http://ab-initio.mit.edu/harminv/
```

```
Photonic-crystal tutorials (+ THIS TALK):
    http://ab-initio.mit.edu/
    /photons/tutorial/
```