Computational Photonics:
Frequency and Time Domain Methods

Steven G. Johnson
MIT Applied Mathematics
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Photonic Crystals

periodic electromagnetic media

1887

periodic in
one direction

1987

periodic in
two directions

2-D

3-D

periodic in
three directions

can have a band gap: optical “insulators”




Periodic

Bloch waves:
Band Diagram

Medium

Electronic and Photonic Crystals

atoms 1n diamond structure | dielectric spheres, diamond lattice

R

photon frequency

electron energy

wavevector wavevector



Electronic & Photonic Modeling

Electronic Photonic
e strongly interacting e non-interacting (or weakly),
—entanglement, Coulomb —simple approximations
—tricky approximations (finite resolution)

—any desired accuracy

e lengthscale dependent e scale-invariant
(from Planck’s /) —e.g. size x10 = A x10
(except materials may change)



Computational Photonics Problems

e Time-domain simulation
— start with current J(X,?)
— run “numerical experiment” to simulate E(x, ¢), H(X, 1)

e Frequency-domain linear response
— start with harmonic current J(x, ) = ¢ 7" J(X)
— solve for steady-state harmonic fields E(x), H(x)
— involves solving linear equation Ax=b

e Frequency-domain eigensolver
— solve for source-free harmonic eigenfields
E(x), H(x) ~ ¢
— involves solving eigenequation Ax=w’x



Numerical Methods: Basis Choices

finite difference finite elements

Bi/ in irregular “elements,”
approximate unknowns
UnKnowns by low-degree polynomial
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boundary-element methods

spectral methods discretize only the
boundaries between

/—\ 1 .
complete basis of homogeneous media
+ smooth functions
/\/&(g. Fourier series) C:} solve
+ /\/\ integral equation

+ . via Green’s functions



Numerical Methods: Basis Choices

finite difference finite elements

%/ in irregular “elements,”
approximate unknowns
by low-degree polynomial
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boundary-element methods
spectral methods

/\
complete basis of

+ .
/\W functions
+ /\yﬂﬂl\ﬁer series)

+ ...

discretize only the
boundaries between
homogeneous media

(::::} ...solve
integral equation
via Green’s functions

Much easier to analyze, implement,
generalize, parallelize, optimize, ...

Potentially much more efficient,
especially for high resolution



Computational Photonics Problems Numerical Methods: Basis Choices

finite difference

e Time-domain simulation
— start with current J(X,7)
— run “numerical experiment” to spectral methods

simulate E(x, 1), H(x, ) —

& _faHA)-fGA) o +/\_/
 Frequency-domain linear response

dx Ax
— start with harmonic current J(x, 1) = e J(x) +/_\/\

— solve for steady-state harmonic fields E(x), H(x) +.....
— 1involves solving linear equation Ax=b

finite elements

__ in irregular “elements,”
/5 approximate unknowns
by low-degree polynomial

» Frequency-domain eigensolver
— solve for source-free harmonic eigenfields
E(x), H(x) ~ e~
— involves solving eigenequation Ax=mw?x

boundary-element methods

discretize only the
boundaries between
homogeneous media




FDTD

Finite-Difference Time-Domain methods

Divide both space and time into discrete grids

— spatial resolution Ax

— temporal resolution At

Very general: arbitrary geometries, materials,

nonlinearities, dispersion, sources, ...

— any photonics calculation, in principle

ﬁ=—l§xE @=l§xH—1
£

ot u ot €
|

dielectric function &(X) = n*(x)



The Yee Discretization (1966)

a cubic “voxel”: Ax x Ay x Az i i+1) -
T ~ (i+1, j+1, k+1)
H, -
G, j, k+1) > Y\ H © I\
A7 A Z
—> —>
7 H

E e X . — .
Z H G, J) (i+1, )

A Y ﬂ\a /\> (i+1, j+1, k) Ex

Ey
Q. j, k) E? (+1,, k)
Staggered grid in space:

— every field component is stored on a different grid



The Yee Discretization (1966)

(i, j+1) —
JH 1
—=-—VxE =
ot u
E
Y\ HZ@
JoH ~ 1(0E, JE,
7 Hl’j% A X oy i, £ Gl i
( 1 1 1 1 )
E i+1’ +—)-FE ia [+ — Ex i+_9 1+ 1 —Ex i+_9 .
1 y+1j+2) y(Jz)_ (4 J+D=E i+ ))
u Ax Ay

| + O(AR) + O(Ay?)

all derivatives become center differences...
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The Yee Discretization (1966)

all derivatives become center differences...
including derivatives in time

t=nAt

=—leE

u

~

t=nAt

Explicit time-stepping:

stability requires At <

H(n+;)—H(n—;)

At
+ O(AF)

Ax

\/ # dimensions

(vs. implicit time steps: invert large matrix at each step)



FDTD Discretization Upshot

* For stability, space and time resolutions are proportional
— doubling resolution in 3d requires
at least 16 = 24 times the work!

* But at least the error goes quadratically with resolution
...Tr1ght?
...not necessarily!



Ditficulty with a grid:
representing discontinuous materials?

“staircasing”

... how does this affect accuracy?



relative error

Field Discontinuity Degrades
Order of Accuracy

E
/ TE polarization (E 1n plane: discontinuous)

o
©
relative error

"| - o+ No smoothing
" | = = =perfect linear
| | = perfect quadratic

=| --©-- No smoothing :
[ | = = =perfect linear © ]
- | == perfect quadratic 10

e \ 10 20 40 80 100
10 10 resolution (pixels/a)
resolution (pixels/a)
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Sub-pixel smoothing

Can eliminate

discontinuity
by “grayscaling”

— assign some average €

1 to each pixel

£

= discretizing a smoothed structure

— that means we are changing geometry

— can actually add to error



relative error

Past sub-pixel smoothing methods
can make error worse!

& convergence 1s
still only linear

-1

Three previous smoothing methods

10 5 . ;
- [ Dey, 1999 |
N [ Kaneda, 1997 ]
= [ Mohammadi, 2005]

10

[[-o - No smoothing : f
1074k~ ® - Mean epsilon

- | —+— Kaneda : .

_ VP-EP

[ | = = =perfect linear

| == perfect quadratic
107

10 20 a0 80 100
resolution (pixels/a)



A Criterion for Accurate Smoothing

from
smoothing Ag

1st-order errors f
7~/

_ 1 _
AE,|” - A(;)\DL\2

We want the smoothing errors to be zero to 1st order
— minimizes error and 2nd-order convergent!

Use a tensor €: \
— 5 E,

(in principal axes:) < 8>

-l
| Meade et al., 1993 | \ <€ 1> / EL



relative error

Consistently the Lowest Error

quadratic accuracy!

10
S —> <4
D. i -
1074 Y 1
C
107 o®
1078 No smoothing A
- ® —Mean epsilon
—=—New method
= = =perfect linear
- perfect quadratic
107 o ‘
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resolution (pixels/a)

relative error

10

—» d 4—

quadratic!

|- -©-- No smoothing
. | — ® —Mean epsilon

- | —=— New method (2Ax)
" | = = =perfect linear
| | —perfect quadratic

+— Kaneda
VP-EP

20 40 80 100
resolution (pixels/a)

| Farjadpour et al., Opt. Lett. 2006 ]



relative error

10

10

10

& 1 3d too

[0 No smoothing
- | — ® —Mean epsilon

Kaneda

' | —&— New method
(| = = =perfect linear
| | = perfect quadratic
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(notice that
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"o & other methods
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has shuffled!)



A qualitatively different case: corners

relative error

107"

107

still ~lowest erTor, but not quadrat1c

-
-
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-
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zero-perturbation

| -~ No smoothing criterion
- | — ® —Mean epsilon __ . e
[ | ——Kaneda o _ not satisfied
SLo VP-EP 1 due to E divergence
f | —=— New method ]
| = = =perfect linear : at corner
ol —perfect14power Iaw o 1 o analytically,
10 20 40 80 100 200

~ 1.404
resolution (pixels/a) error ~ Ax



Yes, but what can you do with FDTD?

Some common tasks:

* Frequency-domain response:
— put in harmonic source and wait for steady-state

e Transmission/reflection spectra:
— get entire spectrum from a single simulation
(Fourier transform of impulse response)

* Eigenmodes and resonant modes:
— get all modes from a single simulation
(some tricky signal processing)



Transmission Spectra in FDTD

l e=1
a =12

T

example: a 90° bend, 2d strip waveguide



Transmission Spectra in FDTD

| -
|

Gaussian-pulse
current source J

Fourier-transform the fields at each x:

E, = [ E®e™dt = Y E(nAte "™ At

P(w) = %f Re[E, xH  Jdx - -------



Transmission Spectra in FDTD

must always do two simulations: one for normalization

electric X ~ Py(w)
field E .

P(w) .
transmission = P(w) / Py(w)



Retlection Spectra in FDTD

S\

P, (w) = %f Re[(E, -E>) x (H, -H? )ldx

-

for reflection, subtract incident fields
(from normalization run)

P(w) = %f Re[E, xH  Jdx - ---~---



Transmission/Retlection Spectra
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Dimensionless Units

Maxwell’s equations are scale invariant
— most useful quantities are dimensionless ratios
like a / A, for a characteristic lengthscale a
— same ratio, same €, W = same solution
regardless of whether @ = 1ym or 1km

Our (typical) approach:
pick characteristic lengthscale a
— measure distance 1n units of a
— measure time 1n units of a/c
— measure o in units of 2nc/a =a / A



Absorbing Boundaries:

Perfectly Matched Layers

“perfect” absorber: PML

Artificial absorbing material
overlapping the computation

Theoretically reflectionless

... but PML 1s no longer perfect
with finite resolution,
so “gradually turn on” absorption
over finite-thickness PML



Computational Photonics Problems Numerical Methods: Basis Choices

finite difference

e Time-domain simulation

— start with current J(x,7)
— run “numerical experiment” to spectral methods

simulate E(x, 1), H(x, 1) ——
df _far A= fa-A0 oo +/\/
 Frequency-domain linear response

dx Ax
— start with harmonic current J(x, 1) = e J(x) +/_\/\

— solve for steady-state harmonic fields E(x), H(x) +.....
— 1involves solving linear equation Ax=b

finite elements

__ in irregular “elements,”
/5 approximate unknowns
by low-degree polynomial

» Frequency-domain eigensolver
— solve for source-free harmonic eigenfields
E(x), H(x) ~ e
— involves solving eigenequation Ax=m?x

boundary-element methods

discretize only the
boundaries between
homogeneous media




A Maxwell Eigenproblem

- = 1 0 -~ w -
VxE=—-———H=1—H First task:
c ot ¢ get rid of this mess
- = 10 = =" o =
VxH=8——E+/=—z—8E
/Cat C

+ constraint

1 . .
Vx=VxH=|— H\ V-H<0

eigen-operator eigen-value cigen-state



Electronic & Photonic Eigenproblems

Electronic Photonic
2 2
) 1 — Q) —
-— V' +Vy=EYy Vx—-VxH=|—|H
2m £ C
nonlinear eigenproblem stimple linear eigenproblem
(V depends on e density lyl?) (for linear materials)

—many well-known
computational techniques

Hermitian = real E & w, ... Periodicity = Bloch’s theorem...



A 2d Model System
OO0 00000000,

000000000 wiewsH
Q Q Q Q Q Q Q Q Q square lattice,
OO000000 @  prda
QQQQQQQ@—@
QQQQQQQQQ

w @F
/H
O OO 000000



Periodic Eigenproblems

if eigen-operator 1s periodic, then Bloch-Floquet theorem applies:

ilk-¥—ar) —

can choose: ﬁ(f,t) = @ ( )HE()_é)

\

planewave o .
periodic “envelope

Corollary 1: k 1s conserved, i.e. no scattering of Bloch wave

Corollary 2: H~ given by finite unit cell, g:a o

so w are discrete w, (k) 000



A More Familiar Eigenproblem

l e=1
; > e =12 A Y
T > X
,band diagram / dispersion relation
0 .

find the normal modes
of the waveguide:

H(y,t) = H, (y)e "

(propagation constant k
a.k.a. p)

light cone

(all non-guided modes) /

Al > kf




Solving the Maxwell Eigenproblem

2
Finite cell =¥ discrete eigenvalues w, (V + ik) % l(V + ik) xH = wn2 H
E C

Want to solve for w,(k), B N
& plot vs. “all” k fOr “a11”’ n, traint: (V + lk) H=0

322:% where: H( x,y)lzi(k'x — of)

Photonic Band Gap

TTTTTTT

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H 1n finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 1

@ Limit range of K: irreducible Brillouin zone

O O OO  —Bloch’s theorem: solutions are periodic in K
ONOROR®)
ONONONG) M

O O O0O0O

first Brillouin zone
= minimum IK| “primitive cell”

irreducible Brillouin zone: reduced by symmetry

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2a

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H 1n finite basis (V)

/

N
H) = H(Xt) = Ehmbm(xt) solve: A‘H> = 0)2‘H>
m=1
finite matrix problem: Ah = a)th

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2b

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H 1n finite basis
— must satisfy constraint: (V +iK) - H=0

Planewave (FFT) basis Finite-element basis

STy
constraint: HG . (G + k) =(

o gj 1;#"‘!‘,"“, 4"17.“
uniform “grid,” periodic boundaries,

constraint, boundary conditions:
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@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 3a

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N?) storage, O(N?) time

Faster way:
— start with initial guess eigenvector h,
— iteratively improve
— O(Np) storage, ~ O(Np?) time for p eigenvectors

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3¢

(1) Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue w, minimizes:

v
“variational 2 . W Ah minimize by preconditioned

theorem” (1)0 = IMIN . . .
r W' Bh conjugate-gradient (or...)




Band Diagram of 2d Model System

irreducible Brillouin zone
M

k

X

frequency @ (2mc/a) =a / A

(radius 0.2a rods, e=12)

T~

Photonic Band Gap

TM bands

r X M

™ ©E gap for
/ H n>~1.75:1



Origin of Gap in 2d Model System
orthog ongl §od§e 1§h§1 gh ¢ O;\ ~_
\jv

\

\

0.4 H
] Photonic Band Gap

0.3 ja)
0'2_5 TM band
lives in high € 01 o
t.i.i/;----.----.----.
. @eeee : x M :
P9 @ @ @ @ ®F
CIO OW ™ gap for

®® ® /H n>~1.75:1
- \+



The Iteration Scheme 1s Important
(minimizing function of 10*-10%+ variables!)

h' Ah
w; = min = f(h
AT

Steepest-descent: minimize (4 + a Vf) over a ... repeat

Conjugate-gradient: minimize (2 + o d)
— d 1s Vf + (stuff): conjugate to previous search dirs

Preconditioned steepest descent: minimize (h + o d)
— d = (approximate A™') Vf ~ Newton’s method

Preconditioned conjugate-gradient: minimize (7 + o d)
— d is (approximate A") [Vf + (stuff)]




The Iteration Scheme 1s Important
(minimizing function of ~40,000 variables)

1000000
100000
100004

1000 =

100

10

1

% error

0.1
0.01
0.001 3

0.0001 E

0.00001

0.000001 3,

Xrey
X D
XD
AT
.....

no preconditioning

preconditioned 3
conjugate-gradient no conjugate-gradient

|

1 100 1000
# 1terations



The Boundary Conditions are Tricky

\ E, 18 continuous

_ E | 1s discontinuous

(D, = ¢E| 1s continuous)

Any single scalar ¢ fails:
(mean D) # (any €) (mean E)

Use a tensor €:
( \

€

(€) E,

\ <g_1>_1/ EJ_



The e-averaging 1s Important

100-
' backwards averaging
10-
— i
S , changes order
= no averagin
O 14 S of convergence
> from Ax to Ax?
tensor averaging
0.14
0.01 . ; ; —————— ..
10 100 (similar effects

resolution (pixels/period) in other E&M
numerics & analyses)



Gap, Schmap?

1

Q

0.9

0.8

0.5

frequency

0:

0.7

0.6

0.4

0.34

0.2

0.1

Photonic Band Gap
TM bands
..............
I X M I

But, what can we do with the gap?



Intentional “defects™ are good

microcavities waveguides (“wires™)

e &
y 4

y 4

,




Intentional “defects” in 2d

(Same computation, with supercell = many primitive cells)

waveguides

microcavities O 0:0'0 O
O 0i0:0 ©
O 0:0:0 O

&G @ & O

® ©:0: 0 O
O 0:0:0 O
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Microcavity Blues

For cavities (point defects)
frequency-domain has its drawbacks:

e Best methods compute lowest-w bands,
but N supercells have N4 modes
below the cavity mode — expensive

* Best methods are for Hermitian operators,
but losses requires non-Hermitian



Time-Domain Eigensolvers

000000 Simulate Maxwell’s equations on a discrete orid
00000 a S

C X Q‘ ® + absorbing boundaries (leakage loss)
@
o0
[

» Excite with broad-spectrum dipole (#) source

QQQ.QQQ /ﬂ

signal processing \ 4 Response 1s many
[ Mandelshtam,
J. Chem. Phys. 107, 6756 (1997) ] /\ /\ one peak per mode
v

decay rate in time gives loss



Signal Processing 1s Tricky

signal processing

» complex o,
NN S

a common approach: least-squares fit of spectrum

0.8 450

400

fit to:

A
(w-w,)” +T7?

350

300

250

200

150 -

100

-0.84 50—§

' ' ' > SR0Q00000 000000000000
2 3 4 5 6 7 8 9 10 0O 05 1 15 2 25 3 35 4

Decaying signal () Lorentzian peak (w)
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Fits and Uncertainty

problem: have to run long enough to completely decay
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20000 -
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Unresolved Lorentzian peak ()

There 1s a better way, which gets complex w to > 10 digits




Unreliability of Fitting Process

Resolving two overlapping peaks 1s

near-impossible 6-parameter nonlinear fit

(too many local minima to converge reliably)
1200+

[ sum of two peaks

1000

There 1s a better
way, which gets
complex w
for both peaks
to > 10 digits

800

600 -

w = 140.0331

400

\ w = 1.03+0.0251

200

Oi- aYaVaVa e_‘_!iﬁi.‘.,_-e...‘e —— W ANaVaVaVa¥YaVaWaVaVWa¥e)

05 0.6 0.7 08 09 1 1.1 12 1.3 1.4 15
Sum of two Lorentzian peaks (w)




Quantum-inspired signal processing (NMR spectroscopy):

Filter-Diagonalization Method (FDM)

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

1 t : . —1 At
Given time series y,, write: Yy, = Y(nAt) = z a.e """

...Tind complex amplitudes a, & frequencies w,
by a simple linear-algebra problem!

Idea: pretend y(?) 1s autocorrelation of a quantum system:

H ‘7/}> = ih— ‘T,U> time-Atr evolution-operator: [//\' — e-iﬁAl‘/ h

say: v, = (p(0)|y(nAn)) = ((O)|U" [ (0))




Filter-Diagonalization Method (FDM)

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

= (W(O)[p(nAD) = (WO)|[U"|[p(©)) U =e ™™

We want to diagonalize U: ecigenvalues of U are ¢
...expand U 1in basis of hp(nAr)>:

= (Y(mAD)|Uy(nAt)) = (p(0)|U™ )= Ywrnat

U, . given by y s — just diagonalize known matrix!

m




Filter-Diagonalization Summary

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

U, . given by y ’s — just diagonalize known matrix!

m

A few omitted steps:
— Generalized eigenvalue problem (basis not orthogonal)
—Filter y,’s (Fourier transtform):
small bandwidth = smaller matrix (less singular)

* resolves many peaks at once
e # peaks not known a priori
e resolve overlapping peaks

* resolution >> Fourier uncertainty




Do try this at home

FDTD simulation:
http://ab-initio.mit.edu/meep/

Bloch-mode eigensolver:
http://ab-initio.mit.edu/mpb/

Filter-diagonalization:
http://ab-initjio.mit.edu/harminv/

Photonic-crystal tutorials (+ THIS TALK):
http://ab-initio.mit.edu/
/photons/tutorial/




Meep (FDTD)

e Arbitrary €(x) — including
dispersive, loss/gain,
and nonlinear [x® and x®]

e Arbitrary J(x,?)
e PML/periodic/metal bound.
e 1d/2d/3d/cylindrical

e power spectra ¢ eigenmodes

MPB (Eigensolver)

* Arbitrary periodic €(x) —
anisotropic, magneto-optic, ...
(lossless, linear materials)

e 1d/2d/3d

* band diagrams, group velocities
perturbation theorys, ...

W e Free/open-source
' software (GNU)

 MPI parallelism

e exploit mirror symmetries

e fully scriptable interface

e built-in multivariate optimization,

integration, root-finding, ...

e field output (standard HDF5 format)



Unix Philosophy

combine small, well-designed tools, via files

Input text file — MPB/Meep — standard formats
(text + HDFS)

Disadvantage:
— have to learn several programs

Visualization / Analysis

Advantages: software
— flexibility (Matlab, Mayavi [vtk],
— batch processing, shell scripting command-line tools, ...)

— ease of development



Unix Philosophy

combine small, well-designed tools, via files

Input text file MPB/Meep — standard formats

\ / / (text + HDF5)

GNU Guile scripting interpreter

(Scheme language)
Visualization / Analysis

software
Embed a full scripting language: (Matlab, Mayavi [vtk],
— parameter sweeps command-line tools, ...)

— complex parameterized geometries
— optimization, integration, etc.

— programmable J(X, 1), etc.

— ... Turing complete
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A Simple Example (MPB)

-

e=1

e=12

find the normal modes w (k)
of the waveguide:

H(y,t) = H, (y)e ™"

Need to specity:
e computational cell size/resolution
e geometry, 1.e. €(V)
e what & values
* how many modes (n=1, 2, ... 7)

A )

> X



A File Format Made of Parentheses
Need to specity:

e computational cell size/resolution

(set! geometry-lattice (make lattice (size no-size 10 no-size)
(set! resolution 32)

e geometry, 1.€. €(y)
» what k values
* how many modes (n=1,2, ... 7) 1 pixel

A

— Q
(qp)
I
o
(srextd Ozg) 01
>
<

> X




A File Format Made of Parentheses
Need to specity:

e computational cell size/resolution
e geometry, 1.€. €(y)

(set! geometry
(list /

(make block (size infinity 1 infinity)
(center 0 0 0)
(material (make dielectric (epsilon 12))))))

e what k values
* how many modes (n=1, 2, ... ?)

(choose units of a)

_>Q
qp)
[
[
(\®)
>
<

> X



A File Format Made of Parentheses
Need to specity:

e computational cell size/resolution

e geometry, 1.€. €(y) _
e what & values (units of 2m/a)

(set! k-points \\\\‘

(interpolate 10 (list (vector3 0 0 0) (vector3 2 0 0))))

 how many modes (n=1, 2, ... ?)

(built-in function)

> X



A File Format Made of Parentheses

Need to specity:
e computational cell size/resolution
e geometry, 1.€. €(y) ... Then run:
e what k values (run)

 how many modes (n=1, 2, ... ?)

(set! num-bands 5) or only TM polarization:

(run-tm)

or only TM, even modes:
(run-tm-yeven)

a > e=12 A
!

> X
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Simple Example (MPB) Results

find the normal modes w (k)
of the waveguide:

Eigenmodes atk = 2r/a

- - - -
- [ T+ im ]

(=)

frequency @ (2rc/a
i

=
=

| grey region= light cona |

red = even
blue = odd

h ol

e

4

> X

fundame nal made

sacond mode
third mode

(arbitary units)

E_ field
z

oz 0.4 0.6 0.8

wavevector k (2t/a)

transverse coordinate y (a)




Do try this at home

FDTD simulation:
http://ab-initio.mit.edu/meep/

Bloch-mode eigensolver:
http://ab-initio.mit.edu/mpb/

Filter-diagonalization:
http://ab-initjio.mit.edu/harminv/

Photonic-crystal tutorials (+ THIS TALK):
http://ab-initio.mit.edu/
/photons/tutorial/




