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Tailoring repulsive optical forces
in nanophotonic waveguides
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We describe a mechanism and propose design strategies to selectively tailor repulsive—gradient-optical forces
between parallel, nanophotonic waveguides via morphology augmented by slow-light band-edge modes. We show
that at small separation lengths, the repulsive force can be made nearly 2 orders of magnitude larger than that of
standard dielectric waveguides with a square cross section. The increased coupling interactions should enable
a wider dynamic range of optomechanical functionality for potential applications in sensing, switching, and

nanoelectromechanical systems.
OCIS codes: 130.5296, 160.5293.

Optical gradient forces are becoming an increasingly im-
portant area of research in nanophotonics with a number
of emerging applications in sensing, switching, and na-
noelectromechanical systems [1]. However, given the
weak nature of such forces, experimental observation
(usually through an indirect measurement of the mechan-
ical-vibrational modes and transmission measurements
[2,3]) requires delicate instrumentation with high sensi-
tivity. As a result, the prospect of future nanotechnolo-
gies based on this phenomenon may be limited unless
these forces can be significantly enhanced. Previous at-
tempts to boost these forces have mainly relied on struc-
tures where the intensity of the electromagnetic field can
be greatly increased, first through resonance [4-7] and
more recently via slow-light modes [8]. Yet these prior
proposals have little effect on the repulsive force, which
has remained weak relative to the attractive force [2],
thereby restricting the full range of dynamic functionality
necessary in complex optomechanical systems. Here we
demonstrate 2 orders of magnitude enhancement (poten-
tially more, with no theoretical constraint on the upper
bound) of the repulsive force between parallel dielectric
waveguides through the careful design of waveguide
morphology augmented by slow-light band-edge modes.
We provide an intuitive explanation for the key role of
geometrical structure on the repulsive force and propose
design strategies for enhancing such forces. We then
show that at small separation between the two wave-
guides and fixed input power, the optical gradient force
can be made arbitrarily large via a reduction in the group
velocity of the guided modes.

The optical gradient force arises from the evanescent
coupling of the modes of two adjacent structures and
is transverse to the light propagation direction. Povinelli
et al. [9] showed that for the case of parallel-dielectric
waveguides, the gradient force can be tuned to be either
attractive or repulsive depending on the relative phase of
the two guided modes and can be computed using the
following analytic expression:

F—_-% 1
w ds kU’ (1)

where @ is the eigenmode frequency of the coupled-
waveguide system, s is the separation distance between
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the parallel waveguides, k is the conserved wave vector,
and U is the total energy of the electromagnetic fields [9].
By convention, negative and positive values correspond
to attractive and repulsive forces, respectively. Rakich
et al. [10] later showed that Eq. (1) is mathematically
equivalent to the Maxwell stress tensor method but
has the advantage that it offers both physical insights into
the underlying mechanisms of the gradient force and is
simpler to compute. Equation (1) indicates that the mag-
nitude of the force is proportional to the mode energy (or
field intensity), a fact which has hitherto been exploited
in various resonant [4-7] and slow-light [8] structures.
Yet Eq. (1) also indicates that the sign (as well as the mag-
nitude) of the force is determined by the rate of change of
eigenfrequency with separation distance. This therefore
suggests that in order to produce repulsive forces, the
system must continually increase its eigenfrequency as
the individual waveguides are brought in closer proxi-
mity (for an attractive force, the opposite is true: the sys-
tem must lower its eigenfrequency). This latter point has
not been explored in detail, and in this Letter we demon-
strate the role of waveguide morphology on tailoring
modal interaction to control the force characteristics.
Let us inspect more closely the connection between
the mode profile and the resulting optical force for the
original case of parallel Si (n = 3.45) waveguides with
square cross section as shown in Fig. 1. This is a plot
of the dimensionless force per unit length and input
power (F'/L) (ac/P) as a function of the dimensionless
waveguide separation s/a, where a is the square width,
L is the waveguide length, c is the speed of light, and P =
v,U/L is the total power transmitted through the coupled
waveguides (U is defined as before and v, is the group
velocity). The waveguide axis is along x and the separa-
tion is along z. In this Letter, we consider only y-odd
modes such that the E,, £, and E, fields are odd, even,
and odd, respectively. Eigenmode computations of the
parallel-waveguide system were performed by conju-
gate-gradient minimization of the Rayleigh quotient using
a freely available plane wave solver [11]. The symmetric
(z-even) mode with data points as solid-red squares
shows a monotonically increasing attractive force
(F' < 0) with decreasing separation distance. The corre-
sponding mode profiles at s/a separation distances of 0
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Fig. 1. (Color online) Normalized force per unit length and in-

put power versus waveguide separation for the symmetric (z-
even, red, lower curve) and antisymmetric (z-odd, blue, upper
curve) y-odd modes of parallel waveguides with a square profile
(width @) at a fixed-axial wave vector of z/a. Insets show the in-
plane E-field vector distribution (foreground) with the total E-
field intensity in the background (darker is more intense).

and 0.5 show the in-plane E-field as the foreground and
the total E-field intensity as the background. As the two
waveguides come closer together and the interaction in-
creases, the mode for the combined structure becomes
localized between the waveguides along their axis of se-
paration. This feature can be readily understood from the
variational theorem [12] as the lowest-frequency eigen-
mode corresponds to the field pattern obtained from

w? [@r|V x E(r)[?

& PreEmE

@)

Equation (2) indicates that the fundamental mode will
concentrate its E-field in regions of high-dielectric con-
stant while minimizing the amount of spatial oscillations
(preference is given to the former because it has inverse
scaling). The symmetric mode’s in-plane E-field compo-
nents are mainly E,, which, due to the continuity of this
field component across a dielectric interface oriented in
the same direction, implies that it can localize more and
more inside the high-dielectric region as the waveguides
are brought closer into contact (an antinodal line at the
center of the combined-waveguide geometry ensures
this). This explains how the mode progressively lowers
its eigenfrequency with decreasing separation and there-
fore gives rise to a monotonically increasing attractive
force for this symmetry profile. (The effect of E,, is simi-
lar to £, because it transforms under z-mirror symmetry
in the same way and is always parallel to the dielectric
boundaries.) The antisymmetric (z-odd) mode, with data
points as blue circles, shows a slowly increasing repul-
sive force with decreasing separation until a maximum
is reached at approximately 0.13s/a before the onset
of attractive forces. An inspection of the in-plane E-field
distribution (shown as blue-shaded insets) reveals that
E, is dominant outside the air gap where E, prevails.
The odd-mirror-symmetry nodal line forces the E, field
to zero in the center (the reason why E, predormnates in
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this area), but this must be done gradually to minimize
the numerator of Eq. (2), which “pushes” apart the
individual-waveguide modes (hence the initial onset of
repulsion) while trying to remain as much inside the
high-dielectric region as possible). Moreover, the inner
vertical edges of the square profile also limit the spatial
extent of air that the FE, fields have to traverse as the
mode coupling increases. This means that when the
two waveguides are in contact and there is no air gap
separating them, the E-field can reside mostly in the
high-dielectric region. Taken together, both the relatively
large cross-sectional area [minimizing the numerator of
Eq. (2)] and the absence of an air gap between the struc-
tures when touching [maximizing the denominator of
Eq. (2)] are the primary reasons why the system with
a square profile can, beyond a certain threshold, continue
to lower its eigenfrequency, and therefore no large re-
pulsive force is obtained. What, then, happens to the
repulsive force if we consider a different waveguide
morphology?

Figure 2 is another plot of the optical force versus
waveguide separation, this time for two different cross
sections: a circle and hemicircle. While in both cases
the symmetric mode shows a similar trend of increasing
attractive force with decreasing separation as the square
case, the repulsive-force behavior of the antisymmetric
mode, particularly for the hemicircle, is now quite
different—increasing monotonically with decreasing se-
paration. As the waveguides approach each other, the
distinct waveguide modes will once again tend to keep
apart so as to minimize the rate of field oscillations.
And this is where the hemicircle with its flat outer edges
and reduced cross-sectional area relative to the circle
leads to a larger amount of E-field to leak out of the
high-dielectric region. Furthermore, unlike the square
case, the convex inner surface causes more of the fields
to spread out into the air as mode coupling increases. The
eigenfrequency, as a result, can only increase as the
waveguides are brought closer together, which therefore

2

77~ Y7
N CA=NXT

L

L
I

anti-symmetric

S {0 N
a ﬁ'é

v
/
[
\
\
\

‘ .
aAIs|ndal

optical force (F/L)(ac/P)

| ; sym icH
0 0.2 0.4 0.6 0.8 1
waveguide separation, s/a

Fig. 2. (Color online) Normalized force versus waveguide se-
paration for the symmetric (z-even, red) and antisymmetric (z-
odd, blue) y-odd modes of parallel waveguides with circular
and hemicircular profile (diameter a) at a fixed-axial wave vec-
tor of z/a. Insets show the in-plane E-field vector (foreground)
with the total E-field intensity in background (darker is more
intense).
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Fig. 3. (Color online) Normalized force versus waveguide se-

paration of four antisymmetric slow-light modes for two parallel

waveguide systems, one with hemicircular (solid circles) and

the other with square (solid squares) cross sections, both with

air holes (periodicity a, radius 0.2a) along the waveguide axis.
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gives rise to increasing repulsion. And so the waveguide
morphology, through a combination of a reduced cross-
sectional area and a surface profile that squeezes the
fields into the air region as coupling increases, plays a
critical role in determining the characteristics of the re-
pulsive force.

To obtain even larger repulsive forces, we now pro-
pose a 3D waveguide structure that combines the mor-
phology necessary for repulsion at small separation
lengths with slow-light modes that boost the magnitude
of the force by increasing the field energy. A previous
proposal used the slow-light effect to obtain large-
attractive forces in a waveguide-substrate system but
did not consider the repulsive force [8]. The photonic-
crystal (PC) waveguide consists of a lattice of air holes
(periodicity a, radius 0.2a) in Si with a hemicircular cross
section (diameter a) as shown in the inset schematic of
Fig. 3 (a circular cross section also shows an enhanced
repulsive force, though not as large as the hemicircle
case). The dispersion relation for the y-odd fundamental
mode of this slow-light waveguide geometry has a band-
edge frequency at 0.3a/4 where the group velocity of a
propagating mode is zero. As the mode energy [U in
Eq. (1)] is inversely proportional to the group velocity,
the force therefore can be made arbitrarily large for an
ideal (i.e., no material absorption, nonlinearities, and sur-
face roughness) slow-light waveguide depending on how
close the operating mode is chosen to the band edge [8].
We investigate the optical forces of a set of four differ-
ent slow-light modes with decreasing group velocity
(although the theoretical lower bound is zero, coupling
to such modes from an external source becomes more
and more challenging due to the inherent impedance mis-
match between the modes). The antisymmetric modes of
the hemicircular waveguide in Fig. 3 are nonmonotonic
(principally due to the larger degrees of freedom in the
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3D unit cell) with the repulsive peak increasing as
the group velocity is lowered. Also shown in Fig. 3 are
the antisymmetric modes of an identical waveguide with
a square cross section, which has negligible repulsive
force even with the slow-light effect. The symmetric
modes for both structures meanwhile show the same
trends as before and are not shown. For comparison,
the maximum repulsive force for the lowest—-group-
velocity (0.024¢) antisymmetric mode of the hemicircular
PC waveguide is nearly 15 at a separation of 0.125s/a,
whereas the square cross-section structure used in [9]
(mode group velocity of 0.025¢) is 0.53 at a separation
of 0.2s/a. Our proposed waveguide geometry thus repre-
sents an enhancement of the repulsive force by a factor
of nearly 30 using this particular slow-light mode (as a
further demonstration, a slow-light mode with group ve-
locity of 0.0046¢ leads to an enhancement by more than 2
orders of magnitude).

In summary, we have demonstrated general design
principles to markedly enhance repulsive optical forces
between parallel waveguides by the proper choice of
waveguide morphology augmented by slow-light effects.
This approach can now be used to further boost the
forces via morphology optimization to determine the
ideal geometry for a specific material system and should
enable progress toward the ultimate goal of dynamic,
reconfigurable optomechanical devices.
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